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ABSTRACT

It has been well established that the test section flow of conven-
tional supersonic and hypersonic wind tunnels contains significant levels
of disturbances. These disturbances are mainly caused by the radiation
of aerodynamic noise from the turbulent boundary layer on the nozzle walls.
This noise level has been shown to have an important effect on boundary
layer transition measured on models in tunnels. The purpose of this thesis
is to present results of a coordinated experimental and theoretical study
of a sound shield concept which aims to provide a means of noise reduction
in the test section of supersonic wind tunnels at high Reynolds numbers.
The model used in the investigation consists of a planar array of circular
rods aligned with the flow, with adjustable gaps between them for boundary
layer removal by suction, i,e., laminar flow control. One of the basic
requirements of the present sound shield concept is to achieve sonic cross
flow through the gaps in order to prevent lee-side flow disturbances from
penetrating back into the shielded region. Tests have been conducted at
Mach 6 over a local unit Reynolds number range from about 1.2 x 106 to
13.5 x 0l per foot. Measurements of heat transfer, static pressure, and
sound levels are made to establish the transition characteristics of the
boundary layer on the rod array and the sound shielding effectiveness.

For a gap-to-rod diameter ratio of 0.16, the flow is laminar over the
entire model at a maximum local Reynolds number based on model length of
about 15 x 106 which occurs at a unit Reynolds number of about 7.5 x 106
per foot. At this unit Reynolds number the transition Reynolds number
on a conventional flat plate in the same wind tunnel is 2 x 106. Transi-
tion Reynolds number on the suction model decreases with decreasing gap
spacing and suction but the model still provides a significant increase
in transition Reynolds number over that for a flat plate. The character-
istics of the boundary layer flow on the rods and the transition behavior
indicates that for large gaps the circular rods function as isolated
swept cylinders. Hence, transition is expected to be essentially indepen-
dent of rod length and therefore should be primarily a function of Reynolds
number based on rod diameter for a given gap spacing and leading edge
configuration.

For a gap-to-rod diameter ratio of 0.16, reduction in sound levels
within the semi-shielded region of the model were about 90 percent (20 dB
attenuation) of the maximum theoretical reduction for an ideal, finite,
planar shield. Reductions in gap spacing and suction caused reductions
in the sound attenuation. It is concluded that a cylindrical shroud
utilizing the slotted wall concept with boundary layer suction can provide
significant reductions of disturbance levels in supersonic wind tunnels at
high unit Reynolds numbers.
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G= G - 26
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Re, Length Reynolds number based on x distance, ( - ).x

r Recovery factor

St Stanton number, q/pmCpQ(Taw - T )
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w Spanwise velocity component
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y Distance normal to surface

a Angle of attack

aeff Local effective angle of attack

• Local effective sweep angle, 900 - aeff

y Ratio of specific heats, 1.4 used throughout

8 Shock angle

T Time

v Kinematic viscosity,P/p
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circular rods
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s Inviscid flow at stagnation line

T Top of rod surface (windward side)

t Transition

w Wall or surface

o Settling chamber conditions

00 Test section free stream

SRod model flow field far from the rods



x

1 Behind normal shock

2 In front of normal shock or total conditions

Superscripts

(F) Time mean value

(~) rms fluctuating value



I. INTRODUCTION

Extensive research conducted in the area of boundary layer transition

has of necessity been carried out in wind tunnels, there being no practical

way at present of making detailed experimental measurements in free flight.

Transition phenomena investigated in wind tunnels have too often been

inconsistent and unexplainable. An informative evaluation of the high-

speed transition problem in wind tunnels and free flight has been

presented by Morkovin [1].

As is now well known, the test section flow of conventional supersonic

and hypersonic wind tunnels are noisy. Laufer [2] proposed and later

showed [3] that sound disturbances observed in the test section were caused

by the radiation of aerodynamic noise from the turbulent boundary layer on

the walls of tunnels. This noise (pressure fluctuations) has an important

effect on transition measured on test models in wind tunnels [3-9]. For

example, the transition Reynolds number has been shown by Stainback 
et al.

[6] to vary inversly with tunnel rms pressure disturbance levels which

range from about 1 to 5 percent of the free stream static pressure. 
In

addition, wind tunnel noise was believed to cause premature transition

on swept wings with suction for laminar flow control [10]. Other measure-

ments made in wind tunnels that might be influenced by noise in the test

section are the mixing rates in free shear layers, stagnation point heating

rates to blunt bodies, and the properties of laminar and turbulent boundary

The number in the brackets indicate references.
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layers on models. Beckwith [11] has demonstrated that, for turbulent flow,

the validity of Crocco's solution to the energy equation is subject to the

requirement of small pressure fluctuation levels.

A wind tunnel with reduced disturbance levels (a "quiet" tunnel --

having laminar rather than turbulent boundary layers on the facility walls)

is required to conduct valid research in these areas. Several concepts

currently being considered or undergoing development for use in such a

quiet tunnel have been discussed by Beckwith [12]. Recent encouraging

experimental data [13] showed that laminar boundary layers can be main-

tained on the walls of a conventional nozzle at larger Reynolds numbers

than previously reported, merely by polishing the surface and heating the

nozzle wall. The test section disturbance levels were reduced by about an

order of magnitude. Results obtained in a nozzle with boundary layer bleed

upstream of the sonic throat showed that transition in the boundary layer

on the nozzle wall occurred at higher Reynolds numbers than for conven-

tional nozzles [13]. However, at higher operating unit Reynolds numbers

the boundary layer on the wall becomes turbulent and other devices for

the suppression and control of noise are required for meaningful transi-

tion testing. The purpose of this thesis is to report on an investigation

of a sound shield concept.

1.1 Laminar Flow Control and Sound Shield Research

Pate and Schueler [9] have shown that free stream rms pressure

fluctuations at Mach 3 were reduced by 40 to 50 percent within a region

shielded by a solid wall cylindrical shroud provided the boundary layer
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on the inside wall of the shroud was laminar. The dominant mechanism

accounting for the residual noise level within the shielded region was

probably reflection of sound from the inside walls of the shroud. 
How-

ever, convection of sound directly into the shielded region by the flow

and transmission through the walls of the shroud may also have contri-

buted to the residual noise to some extent. Thus a shroud appears to

offer a way to shield a test area from radiated noise and reduce the free

stream disturbances at high operating pressures if a method can be

developed to prevent the boundary layer on the inside of the shield from

becoming turbulent.

Earlier considerations have been given to the use of both slotted

and porous walls with suction for maintaining laminar boundary layers on

tunnel walls for noise reduction. Pfenninger and Syberg [14] have recently

conducted an extensive study of suction through porous walls in wind tunnels

to laminarize the nozzle wall boundary layer for the reduction of acoustic

disturbances in the test section at supersonic and hypersonic speeds. Super-

sonic laminar boundary layers have been maintained for Reynolds numbers up

to 51 x 106 by using spanwise slots [15], however, disturbances were

present in the flow due to the disturbances at the slots. Klebanoff and

Spangenberg [16] at the National Bureau of Standards have maintained laminar

boundary layers on nozzle walls up to Reynolds numbers of about 3.5 x 106

by using longitudinal rods with suction in a Mach 2 wind tunnel. A concept

similar to that of Klebanoff and Spangenberg has been tested at the NASA

Langley Research Center. Preliminary results with a flat sound shield
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model constructed with longitudinal rods (rods aligned with the flow)

indicated that transition could be delayed to higher Reynolds numbers

than on a conventional flat plate while the noise levels measured in the

shielded region were reduced by about 30 to 40 percent from the free

stream level [16]. Harvey et al. [17] reported on an experimental and

theoretical analysis of an improved flat rod model for laminar flow and

noise control in supersonic wind tunnels.

A recent investigation has been conducted from subsonic to supersonic

speeds by Binion and Anderson [18] using a slotted test section wall con-

figuration composed of longitudinal rods similar to the present model but

without forced suction to evaluate the effectiveness of this rod wall for

reducing transonic wind tunnel disturbances. They concluded that, while

the rod walls are no panacea for two-dimensional transonic wall inter-

ference problems, results indicated that further work on rod wall concepts

merit consideration during development of the next generation of transonic

wind tunnels.

This brief analysis of previous techniques for maintaining laminar

flow to high Reynolds numbers and the potential of a shroud to shield a

test region from radiated noise suggest that some type of sound shield or

shroud attenuation device could be used to reduce and control test section

disturbances in supersonic wind tunnels. This shield should be designed

to minimize self-generated disturbances by boundary layer bleed at the

suction surface.
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1.2 Sound Shield Concept

A complete analysis and understanding of the acoustic characteristics

of the present sound shield concept is considered beyond the scope of this

thesis. However, it is possible to establish general principles of sound

shielding. The requirements for efficient operation of sound radiation

shielding for the present purposes are illustrated in Figure 1.1. Weak

pressure disturbances in a supersonic flow travel along Mach waves, so

noise from the turbulent boundary layer on the top wall of the nozzle is

radiated directly into the ."half-shielded" region of the model. Some of

this incident sound field is reflected and transmitted by the rods and

absorbed through the gaps. The model is operated at angle of attack to

establish a pressure drop across the rod array. If this pressure drop

is large enough sonic cross flow occurs in the gaps of the rod array and

prevents lee-side disturbances from entering the shielded region.

It is well known that sound radiated by a turbulent boundary layer

is much greater than that for a laminar boundary layer. Therefore, it is

necessary to maintain laminar flow over the rod array by the use of suction

for boundary layer removal. Test models placed within the shielded region

(Figure 1.1) would be partially shielded from noise radiated from the

nozzle wall boundary layer. The objectives of the rod sound shield

research was to optimize the design in order to promote the maintenance

of a laminar boundary layer and reduce free stream disturbances.



-. VZShielded region Sonic crossflow
max. noise through adjustable gaps

\ reduction

Lam. B. L. on rods

Shock
Min. L. E. disturb. 24

M=6 1/4" dia. rods

ada/ Disturbance
- Radiated Jff

sound r,

Turb. B. L.

Nozzle wall

Circular rod model.

Figure 1.1.- Sketch illustrating principle of shielding concept for laminar flow
suction model.
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II. MODEL DESCRIPTION

Photographs of the noise shield model used during the present

experimental investigation are shown in Figure 2.1. A sketch of the

model is shown in Figure 2.1.1 which illustrates important construction

features. This model was chosen for the present proof of concept tests

to simplify construction and operational techniques. The model consisted

of a planar array of circular rods aligned parallel to the flow. The

rods were faired into a sharp flat plate at the leading edge. Gaps were

provided between the rods for boundary layer removal and the width of the

gaps was adjustable to control the suction mass flow rate through the gaps.

The rods were supported by the flat plate leading edge and three cross

support members perpendicular to the rods. The two central rod support

stringers shown in Figure 2.1.1 are 0.125-inch diameter rods. The trans-

verse support at the rear of the model is 0.50-inch in diameter. The

bottom of the model is covered with a solid plate (cross hatched area in

Figure 2.1.1) over the forward half of the model to maintain the lee-side

region of the rods at base pressure when the model is placed at angle of

attack.

The upper sketch in Figure 2.1.1 shows a top view of the leading

edge and rod junctions. The circular rods have a flat-to-round shaped

fairing region downstream of their junction with the flat plate leading

edge. Spacers (Figure 2.1.1) are placed between the rods in this forward

region and at the rear transverse support to set the desired width of the



FRONT AND SIDE VIEW REAR VIEW

Figure 2.1.- Laminar flow suction model.
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5 -End view -
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Flat plate
leading edge 24, > 1/4" dia.-
/ Spacer

300 Web 3Rod support ...........
stringer 3.8"

harp L.E. 0
(0.001-in. thicktc) 150 10

Side view

Figure 2.1.1.- Sketch of flat plate rod model.
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gaps at these stations. The support stringers were threaded and small

nuts were then set on each side of the webs to maintain the correct gap

spacing along the entire length of the rods. The model was tested at

angle of attack to produce a pressure ratio across the rods that was

usually sufficient to insure sonic cross flow in the gaps.

Two hollow-rods, with wall thickness of 0.028-inch, were instrumented

with 21 thermocouples spaced evenly along their length and located on the

windward stagnation line. The standard transient technique [19] to measure

the heating rates was used. Four rods have pressure orifices located at

chordwise stations of = 00, 900, and 1800 at several longitudinal

stations.

III. INSTRUMENTATION

Chromel-alumel wires of 0.005-inch diameter were spot-welded to the

inside surface of the thin wall hollow .rods to form the thermocouple

junctions. The wire leads were brought out at the model rear through the

inside of the hollow rods.

The pressure orifices were 0.040-inch diameter. The pressure tube

lengths were kept at a minimum of about six feet to reduce lag. Capacitance

type pressure transducers were used that had a range selection feature

which provided seven ranges with fullscale readout on each range. Either

automatic or manual range change selection was available. The accuracy

of all pressure transducer readings was 0.25 percent of fullscale reading.



Pressure data acquisition was continuously monitored during each test

until the readings were constant.

IV. TEST CONDITIONS

The rod model was tested in the Langley Mach 6, 20-Inch Tunnel with

air as the test medium. Tests were conducted at 50 and 100 angle of

attack for gap-to-diameter ratios of G/D = 0.068, 0.12, and 0.16. The

local unit Reynolds number range for these tests was about 1.2 x 106 <

Re/ft 13.5 x 106 for T /To = 0.63. Free stream disturbance levels in

the tunnel test section have been measured over a range of unit Reynolds

number [6].

V. THEORY

An analysis of the inviscid and boundary layer flow on the rods for

the present model has previously been made by Berger [20] using the com-

puter program of Reference [21] for infinite swept cylinders. Laminar

and turbulent predictions [20] of the local Stanton numbers on the wind-

ward side of the rods have previously been made and compared to experi-

mental data [~ ,0 for G/D = 0.6 at Mach 6. laminar predictions for

values of G/D < 0.16 were also made [20] with some participation from

this author and are shown herein compared to data.

Infinite swept cylinder concepts are applied to the flow on the rods

in the region downstream of the flat plate leading edge-rod junctions

(Figure 2.1.1) [20]. In the analysis by Berger [201], one of the inputs to
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the boundary layer program [21] was the local effective angle of attack

aeff' that yields very large sweep angles for the circular rods. In view

of the large effective sweep angles of the present rods with respect to

the local flow (= 890), the boundary layer behavior was surprisingly well

represented by swept cylinder theory [17, 20] for G/D = 0.16 at Mach 6.

Following the analysis by Berger [20], the cross flow normal to the rods is

considered independent of the streamwise flow but dependent on the suction

mass flow area. Thus, from continuity, the ratio of chordwise-to-spanwise

velocity in the local free stream is (see Figure 5.1):

um (pu)G G
(pW) (D+G))

From the perfect gas law and definition of the speed of sound, equation

(1) may be expressed as followt

_ PG (M)u,G G*
w (M)Y 7 (D+G) (2)

In terms of the stagnation line conditions on the rods and for sonic gap

flow (M)u,G = 1.0, equation (2) may be expressed as

u- PG Pst T Ts i G /D
W, Ps9 P TsM TG ) 1 + G/D

Since (M)w,0 = (M)Q,0 cos Seff and for sonic flow at the gap



Shock w
Disturbance us

. :........ G * + 2 6* = G

Figure 5.1.- Sketch of rod model flow field and local free stream conditions.
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PG TG= 0.5283 and = 0.8333
Psk Ts

equation (3) may be expressed as

tan1  0.5787 /T/sI G/D (4)
eff = tan cos eff (M)Q,~ PPs) 1 + G/D

From the known free stream conditions ahead of the model, calculation of

the local free stream conditions was accomplished by using the conven-

tional wedge relations for crossing the oblique shock attached to the flat

plate leading edge followed by a Prandtl-Meyer expansion, aeff' across the

disturbance (Fig. 5.1). For typical conditions in the present tests,

eff = lo, and to a first approximation G G , thus resulting in extremely

large sweep angles of g = 890. This large value of B becomes an important

factor in the present heat transfer calculations since one would expect

that swept cylinder heating would approach the conventional flat plate

value. For an isolated swept cylinder without induced cross flow, the

cross flow velocity would approach zero as S approaches 900 resulting in

a reduction in the heating rate. Further details for the boundary layer

inputs are given by Berger [20] along with calculated results on the

present model for the chordwise velocity distribution, cross flow stability,

viscous, and gap spacing effects.
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VI. DATA REDUCTION

Measured heat-transfer rates along the rod windward stagnation line

were determined from the general heat-transfer-rate equation for a

calorimeter

SdT (5)
qw w p,w tw dT (5)

where p , C p,w and tw are based on the rod material and wall thickness.

The derivative dT/dT, was determined from the measured slope of each

thermocouple output at discrete time intervals. For the present calcula-

tions, the local Stanton number is

St = h/p~ Q Cp (6)

where

h = q / (Taw Tw) (7)

and

Taw T To
T = r O 1)- TO (8)

The recovery factor r =V-r for laminar flow and r =~- for

turbulent flow. The derivative dT/dT in equation (5) was evaluated during

time intervals of less than 10 seconds after injection of the model into

the test flow.
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VII. RESULTS AND DISCUSSION

7.1 Pressure Data

Detailed pressure measurements around the circular rods at several

chordwise stations have previously been made [17] and compared with pre-

dictions [17, 20] for several gap-to-diameter ratios over a Reynolds

number range at Mach 6 and a = 100. In general, the agreement between

data and predictions [17] was good and indicated that sonic cross flow in

the gaps was achieved by induced suction for G/D = 0.16 over a wide range

of local unit Reynolds numbers at a = 100

Static pressures on the rods at = 00, 900, and 1800 were also

measured in this investigation for G/D = 0.068, 0.12, and 0.16 at distances

downstream of the model leading edge of x = 5.5, 12.5, and 19.5-inches over

a range of local unit Reynolds number. The ratio of measured static

pressure on the windward stagnation line or top of the rods (pT) to the

tunnel settling chamber pressure is shown in Figure 7.1.(a) for these

longitudinal stations and gap spacings for Mm = 6 and a = 100 to illustrate

the variation of static pressure along the rods with Re/ft. The pressure

varies slightly both with longitudinal distance and Reynolds number for all

gap spacings. The data scatter observed for x = 5.5-inches is probably

due to the flat plate leading edge-rod junction disturbance produced at

x = 3-inches (to be discussed later) or the initial development of suction

flow in the gaps in this forward region. The trends of the measured

pressures with longitudinal distance and Re/ft is similar to that expected

on a flat plate without suction and flow separation.



a, deg. G/D
310-3  0 10 0.068

0 0.120

PT 0.160 x = 5.5 in.

P0 O O O OO O oI 0
6j 0 I0i 0

3x10 - 3

0 x = 12.5 in.

0 0

I I I I

3x10 - 3

0 x = 19.5 in.

TO
2 0 O 0 O Oo% ( 000 0 o

1 I I I I I I

0 2 4 6 8 10 12 14

R /ftxlO-6

(a) Pressure on windward stagnation line ( = 00)
Figure 7.1.- Comparison of measured static pressure on rod model; M 6, T = 530 0 R.
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The measured values of pT in Figure 7.1.(a) have been used to

.normalize the measured values of the pressure at the rod physical gap

minimum (q = 900) and rod bottom (q = 180o to determine if sonic cross

flow occurred in the gaps. Figures 7.1.(b) and (c) give a summary of

the effect of gap spacing on sonic cross flow for the circular rod model

over a range of local Reynolds number. Results are shown for G/D = 0.068,

0.12, and 0.16 at a = 50 and 100. The ratio of measured static pressure

on the rod side (ps) to the top (ps/PT) and rod bottom pressure (pB) to

the top (pB/PT) is shown for several longitudinal stations along the rods.

Values of pB/PT for all gap spacings and angle of attack are below 0.528

(M = 1) (Fig. 7.1.(c)) indicating that sufficient pressure drop through

the rod gaps was present to obtain sonic cross flow. Also, the values of

pB/PT for 0.068 5 G/D 5 0.12 at a = 50 are higher than the values for

c = 100 for Re/ft 2 4 x 106. The values of ps/PT for G/D = 0.068 at

a = 100 and 0.068 5 G/D 0.16 at a = 50 (Fig. 7.1.(b))are always above

0.528, possibly because of boundary layer viscous effects. The effective

minimum flow area would be expected to change significantly for the lower

gap spacings and suction due to boundary layer displacement effects around

the rods [20]. This effect would cause a shift in the true or flow gap

minimum downstream of the physical minimum where the measurement of ps/PT

was made. The pressure data at the gap (ps/PT) for Re/ft < 3 x 106 are

higher than the values for Re/ft > 3 x 106 for G/D = 0.068 at a = 100

possibly due to transition of the rod boundary layers as will be discussed

later. It is apparent that viscous gap flow effects may have become dominant

with reduced G/D and Reynolds number.
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(b) Effect of gap spacing on sonic crossflow at the gap.

Figure 7.1.- Continued.



20

a, deg G/D G, in

S 10 0.068 0.017
I .120 .030

.160 .040
/ 5 .068 .017
0 + .120 .030

.6 M
M=l

.4 -

.2 - * # A

X= 5.5 inches

I I I I I I I 1 I I I I
0 2 4 6 8 10 12 14 x 106

.6 -
M= 1

.2 •o-•

- X = 12.5 inches

I I I I I I I I I I I
0 2 4 6 8 10 12 14 x 106

Local Reynolds number, Re /ft

(c) Effect of gap spacing on pressure at bottom of rods.

Figure 7.1.- Concluded.
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7.2 Heat Transfer and Transition

The extent of laminar boundary layer flow on the windward side of

the circular rods was determined from heat transfer measurements along

the stagnation line of the rods. These heat transfer data are compared

with laminar and turbulent predictions in Figure 7.2.(a) for Mach 6 at

a = 100 and G/D = 0.16, and with laminar predictions for G/D = 0.12, and

0.068 in Figures 7.2.(b) and (c), respectively. Values of Stanton number

for the laminar flow predictions [20] in Figure 7.2 were calculated for

values of Re/ft 6.1 x 106. However, predicted laminar values of St

shown for Re/ft < 6.1 x 106 were obtained by the assumption that St varies

inversely proportional to the square root of the unit Reynolds number. A

discussion of the validity of the boundary layer solutions at low Reynolds

number and G/D has been given [17, 20].

No variation of St along the stagnation line is expected from theory

[20, 21] when the boundary layer is laminar or turbulent over the entire

model. For example, at G/D = 0.16 and the lowest Reynolds numbers of

Re/ft < 8.01 x 106 (Figure 7.2), the laminar theory predicts the correct

level of the data, which were nearly constant along the stagnation line

and therefore similar to that along an infinite-swept cylinder for the

entire rod length. However, at the higher Reynolds numbers (8.01 x 106

Re/ft 5 12.2 x 106), the experimental values of St agree with laminar

theory only over the forward most portion of the model as transition moves

forward with increasing Re/ft. At the beginning of transition the heating

rates increase, as expected, to peak values followed by a gradual decrease

to the predicted turbulent St levels for G/D = 0.16.
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Figure 7.2.- Continued.
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Figure 7.2.- Concluded.
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Similar trends in the data and theory comparison for G/D = 0.12 and

0.068 to those for G/D = 0.16 are evident in Figure 7.2. However, the

maximum local Reynolds number for the maintenance of laminar flow over

the entire model length is seen to decrease with decreasing G/D. Also

shown on Figure 7.2 for G/D = 0.12 and 0.068 is the variation of St with

Rex for a conventional flat plate at Mach 6 and a = 100. Values of the

flat plate Stanton number are lower than measured values on the stagnation

line of the rods. Calculated values of St for laminar flow (Figs. 7.2.(b)

and (c)) are not shown for Re/ft < 4.24 x 106 since rod boundary layer

viscous effects have previously been shown [20] to give invalid solutions

for reduced G/D and Reynolds number. Measured values of St for G/0 = 0.068

(Fig. 7.2.(c)) are much higher than the laminar predictions over the test

Reynolds number range possibly due to the presence of discrete vortices on

top of the rods to be discussed later. Thus, from comparison of data and

theory shown in Figure 7.2, and in spite of the large effective sweep

angle of the circular rods with respect to the local flow ( = 890), the

heat transfer distribution along the stagnation line is surprisingly

similar to that on swept infinite cylinders for G/D = 0.16 and 0.12.

It might be expected that at B = 890 swept cylinder heating would

approach the conventional flat plate value (Figure 7.2). An investigation

has been made using isolated swept cylinders for S approaching 900 and

the heating rate measured did approach the flat plate value [22]. For

the present tests, the induced cross flow velocity was maintained by

suction through the gaps (Figure 7.1) and caused the stagnation line
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heating to be larger than on a flat plate. For an isolated swept cylinder

without induced cross flow, the cross flow velocity would approach zero

as B approaches 900 resulting in a reduction in the heating rate for down-

stream of the tip or leading edge.

7.3 Comparison of Transition Results

The effect of gap spacing on the location of transition on the sound

shield over the range of local unit Reynolds number is shown in Figure 7.3

for 0.068 5 G/D 5 0.16. Transition location was chosen at the beginning

of the rise in heating observed in Figure 7.2 for a = 100. Results shown

in Figure 7.3 for a = 50 were obtained from similar heating data which

are not presented herein. Also shown for comparison is a solid line

representing transition results obtained on a conventional sharp flat plate

at Mach 6 and a = 100 [23]. The solid symbols extending beyond the end of

the rod model (dashed line) represents the existence of laminar flow over

the entire model length of two feet.

Laminar flow was maintained over the entire model length for maximum

values of (Re/ft)t given on Figure 7.3 for the various values of G/D

tested before transition moves on the rear of the model with increasing

Re/ft. At a given local unit Reynolds number the present model has a

transition Reynolds number considerably higher than the conventional flat

plate [23] for all gap spacings tested. The trends for movement of

transition forward on the model with increasing Re/ft for G/D = 0.12 and

0.16 is considerably different than the flat plate trend [23]. However,

the variations of Xt with Re/ft for G/D = 0.068 and for both a = 50 and 100
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Figure 7.3. - Effect of gap spacing and local unit Reynolds number on
transition location.
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are nearly the same as that for the flat plate indicating that the movement

of transition with Re/ft for these conditions was similar to that of a flat

plate. It is concluded that the gap spacing significantly affects the

maintenance of laminar flow on the sound shield presumably'because of

changes in suction mass flow.

Shown in Figure 7.3 are corresponding values of the location for

transition on the suction model as measured by the rms pitot probe

described earlier [17, 13] for G/D = 0.068, 0.12, and 0.16 and a = 100

The value of x = 9.75-inches corresponds to the upstream acoustic origin

on the rods for disturbances that intersect the face of the probe located

at x = 15.2-inches and y = 1.125-inches. The probe then responds to

transition at this value of x indicated by a sudden increase in pi above

that measured for laminar flow at lower values of Re/ft. This increase

occurred at Re/ft = 2 x 106, 3 x 106, and 8 x 106 for values of G/D =

0.068, 0.12, and 0.16, respectively. With the exception of G/D = 0.068,

a consistent difference exists between the location of transition at the

same Re/ft for the two measuring techniques. The fact that the rms pitot

probe indicated that transition occurred on the suction model further

forward than indicated by the heat transfer data is probably due to the

presence of disturbances or vortices [17] in the gap region of the rod

boundary layers.

Maximum length Reynolds numbers for laminar and transitional flow

are shown as functions of local unit Reynolds number in Figure 7.3.1 for

the circular rod model. Values of Rex,t were chosen at the beginning of
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Figure 7.3.1. - Variation of transition Reynolds number with Re /ft.
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transition as indicated by the rise in the heating data from the laminar

level as shown earlier in Figure 7.2. Also shown for comparison in

Figure 7.3.1 are transition results obtained with the rms pitot probe and

a conventional flat plate [23] in the same wind tunnel for a = 10 . The

present results are shown for 0.068 5 G/D 5 0.16. At a given local unit

Reynolds number the rod model has a transition Reynolds number considerably

higher than the flat plate [23]. For example, at a local unit Reynolds

number of 7 x 106, transition for the rod model with G/D = 0.16 was just

aft of the model base or Re 14 x 106. For the flat plate at the samex,t

unit Reynolds number, Rext = 2 x 106. For G/D = 0.068, the variation of

Rex, t with local unit Reynolds number is similar to that for a flat plate

[23]. However, this variation is considerably different for 0.12 5 G/D 5

0.16. Apparently, the behavior of transition for G/D = 0.068 is similar

in trend to that for a flat plate without suction but has higher values

of transition Reynolds numbers. Hence, for large values of G/D the present

concept satisfies one of the requirements of an effective sound shield,

namely; length transition Reynolds numbers that are significantly larger

than that expected on a flat plate.

When transition moved onto the model at unit Reynolds numbers of

about 3.5 x 106 and 7.5 x 106 for G/D = 0.12 and 0.16, respectively, there

is a rapid decrease in transition Reynolds number with increasing unit

Reynolds number. This behavior is not characteristic of a flat plate or

wedge. To further investigate this transition behavior, the transition

Reynolds numbers based on rod diameter were calculated for the present
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tests and compared with results of Bushnell [24]. The calculated values

of ReD,t are shown in Figure 7.3.2 for the circular rods at a = 100. An

equivalent flat plate transition Reynolds number is also shown for compari-

son at G/D = 0. This value (Fig. 7.3.2) was obtained from Figure 7.3 by

extrapolating the flat plate results of Cary and Morrisette [23] back to

the end of the present rod model (x = 24-inches) and then multiplying

the corresponding local unit transition Reynolds number by D.

The variation of ReD,t with G/D increases rapidly with increasing gap

spacing to a value of ReD,t = 1.5 x 105 for G/D = 0.16 which agrees well

with corresponding values (1.5 x 105 5 ReD, t 5 2 x 105) on isolated swept

cylinders reported by Bushnell [24] where transition was dominated by tip

or root disturbances. Also shown on Figure 7.3.2 are calculated values

[20] indicating the effect of gap spacing on merging of the boundary

layers on adjacent rods at the minimum gap. Merging of the boundary

layers occurs for values to the left of the predictions [20]. Valid

boundary layer solutions exist to the right of each curve.

It should be noted that the value of ReDt 2 x 106 is for swept

cylinders with a pressure distribution and velocity gradient corresponding

to isolated cylinder flows [24]. For the present suction model, the

pressure distribution [17] and velocity gradient are quite different from

that for isolated cylinders. Therefore, it is possible that ReD,t will

continue to increase when G/D is increased above 0.16 and the possible

effects of leading edge or root disturbances [24] may not dominate

transition on this model [251. In any case, it is concluded that the
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boundary layer behavior on the stagnation line of the rods is similar to

that on swept cylinders based on experimental heat transfer results.

Hence, transition on the circular rods for all gap spacings should be a

function of ReD only and independent of rod length. For example, a

4-foot long sound shield utilizing the present concept with 0.25-inch

diameter rods and G/D = 0.16 would be expected to provide a length

Reynolds number of 28 x 106 with laminar flow along the entire length

based on (Re/ft)t = 7 x 106. Presumably, if leading edge disturbances

are important here and if they can be eliminated by improving the fairing

at the leading edge (Figure 2.1.1) or by eliminating the effects of the

fairing, transition Reynolds number based on rod diameter could be greatly

increased [26, 27].

7.4 Visual Observations

Schlieren Photographs...- Representative schlieren photographs of the sound

shield are shown in Figure 7.4 for G/D = 0.16 for Re/ft = 9 x 106 and

Figures 7.4.1 (a), (b), and (c) for G/D = 0.12 and 0.068 for a range of

unit Reynolds number. Figure 7.4.1(c) is enlarged photographs of the flow

field over the rear of the model (8 5 x 10-inches) for G/D = 0.068. The

entire model could not be photographed during a single run and therefore

the forward region (0 s x 5 7-inches) of the model is shown separate from

the rearward portion (8 5 x 5 24-inches) in Figure 7.4 for G/D = 0.16 at

a = 100. Only the rearward portion of the model (8 5 x 5 24-inches) is

shown in the other figures.
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Figure 7.4.1.- Schlieren photographs of flow field over rear of
flat plate sound shield model with circular rods.
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A disturbance (below bow shock) originating in the forward region of

the rod model (Fig. 7.4) for G/D = 0.16 and a = 100 was caused by the flat

plate leading edge-to-rod fairing (Fig. 2.1). The photographs in Figure

7.4 indicate that this disturbance intersected the bow shock causing a

vortex sheet to occur (see rear view). A similar disturbance was present

for all values of G/D at a = 100

A wave pattern in the model flow field (Figs. 7.4 and 7.4.1) down-

stream of the leading edge region was observed for all tests at Mach 6.

The waves are parallel with the local Mach angle in the model flow field.

Analysis of the rod gap spacing tolerances and comparison with the test

results revealed that the somewhat irregular wave patterns seen in

Figures 7.4, 7.4.1.(a), and 7.4.1.(b) were probably caused by longitudinal

variations in the gap spacings which were present during tests. Measure-

ments of the rod gap spacing along the model length indicated that a

maximum variation of about ± 0.0020-inches existed at the gaps at random

location on the model.

The obviously intense waves also observed in the flow field for

a = 50 (Figs. 7.4 and 7.4.1.(b)) are due to the lateral rod support

members that induce strong disturbances. The local Mach number is super-

sonic at the leeside of the gap region of the rod array and in the vicinity

of the 0.125-inch diameter rod cross support. Therefore, a shock is

produced on the rod cross support by the gap suction flow and this strong

disturbance passes back through the gops and into the shielded region

(see Fig. 7.4 for a = 50). The presence of this type of disturbance for
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a = 5 , in spite of sufficient Ap to generate sonic cross flow (Fig.

7.1.(b)), could definitely be detrimental to the achievement of flow

field uniformity. For a = 50 and G/D = 0.12 (Fig. 7.4.1.(b)) the flow

near the rods is observed to separate from the surface at the rear of the

model with increasing Re/ft. Transition was also found to move on the

model and occur for Re/ft = 1.7 x 106 for this gap spacing and both

a =5 o and 100

The waves observed in Figure 7.4.1.(c) for G/D = 0.068 appear to be

more evenly spaced than in Figures 7.4, 7.4.1.(a) and (b). Hence, the

waves at this gap spacing may be the result of some regular flow phenomena.

For example, these nearly regular spaced wave patterns could possibly be

caused by longitudinal vortex interaction occurring on the rods since such

phenomena have previously been observed using the vapor screen technique

[17]. The vortex structure on the rod array may interact in the sonic gap

flow region at nearly even intervals in the downstream direction producing

the observed wavelets. When the suction mass flow is reduced these

vortices may become highly unstable and lift off the rods.

The photographs in Figure 7.4.1.(c) for G/D = 0.068 at a = 100 also

indicate an increase in either the boundary layer thickness or a change

in the previously described presence of vortex flow over the rods with

increasing Re/ft as evidenced by the white region in the photographs

(Fig. 7.4.1.(c)) along the rod model surface. The observed "double" flow

structure on the rods, for example, at Re/ft = 5.45 x 106 was measured

to be about twice that of the calculated boundary layer thickness from
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Reference [20] for G/D = 0.068. The measured thickness of the double

flow structure corresponds roughly to the observed height of possible

discrete vortices present on the rod array and reported earlier [17]

for G/D = 0.16 at a = 100. It may, therefore, be concluded that the

vortices affect the flow near the rods more at the small gap settings

than at G/D = 0.16

Oil Flow. - Oil flow tests were conducted on the rod model at M. = 6 and

a= 100 for 3 x 106 ' Re/ft 5 10 x 106. The techniques used have been

previously reported [23, 28, 29]. Representative photographs of oil-flow

patterns obtained for laminar and turbulent flow are shown in Reference

[17].

Flow turning angle distributions were measured from oil flow photo-

graphs [17] at a station located approximately 12-inches from the leading

edge of the model. A comparison of the measured flow turning angle in the

chordwise direction on the rods with calculated laminar and turbulent

values [20] from the swept cylinder theory [21] is shown in Figure 7.4.2

for M- = 6 and a = 100. In general, data and theory [21] agreed for both

laminar and turbulent flow and indicate higher turning angles than for

the inviscid flow. The disagreement between data and theory for c > 500 is

mainly due to the difficulty in obtaining accurately measured values of

turning angle w in this region. It appears, from the agreement shown in

Figure 7.4.2 that local flow conditions on the rods can be accurately

calculated using the swept cylinder method [21].
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7.5 rms Pressure Fluctuations in Model Flow Field

Pressure fluctuations were measured by P. C. Stainback in the free

stream of the wind tunnel and within the partially shielded region (Fig.

1.1) of the rod model flow field. A pitot probe was used to measure the

rms pitot pressure fluctuations [13]. The probe was located on the rod

model centerline and the probe tip was positioned 1.125-inches above the

model at x = 15.2-inches. Tests were conducted for values of G/D = 0.068,

0.12, and 0.16 for a = 100 over a range of local Reynolds numbers

(Fig. 7.5).

Measured values of the ratio of rms pressure fluctuations in the

model flow field to those in the tunnel free stream at the same unit

Reynolds number and with the same probes and transducers are shown in

Figure 7.5. The pitot probe responds to noise generated in boundary

layers upstream of the probes at acoustic origins [13] of disturbances

that intersect the face of the pitot probe pressure transducer. The

acoustic origins were determined by extrapolating upstream along local

Mach lines from the tip of the pitot probe transducer until the boundary

layers on the model or on the tunnel wall were intersected. A correspond-

ing disturbance level measured for a cylindrical shroud with no suction

[9] is also shown for comparison in Figure 7.5. Pate and Schueler [9]

tested the shroud at Mach 3 and found that about 35 percent attenuation

in noise level was achieved at Re/ft = 1.2 x 106 before transition

occurred on the inside walls of the shroud.
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The important results of the present tests (Fig. 7.5) are that the

measured rms pressure fluctuation data obtained with the pitot probe are

reduced by as much as 50 percent for the circular rods and G/D = 0.16
until transition occurs at Re/ft = 8 x 106. The noise reduction was

about 40 percent for G/D = 0.068 and 0.12 before transition occurs at

Re/ft = 2 x 106 and 3 x 106, respectively. These values of unit Reynolds

number for transition obtained from the pressure fluctuations are fairly

consistent with the heat transfer data (Figs. 7.2 and 7.3) but the

corresponding values of Rex,t differ. This difference may have been

expected since the instrumentation used to measure the pressure fluctua-

tions [13] is considerably more sensitive to the presence of disturbances

in the flow than that used to measure the heat transfer data. It is

possible that disturbances present within the laminar boundary layers on

the rods increase in level as the boundary layer becomes unstable before

transition occurs [13]. Furthermore, the possible presence of discrete

vortices close to the rods as determined by vapor screen studies [17]

would also produce disturbances that are related to vortex strength.

The reduction in noise level of about 50 percent is believed to be

close to the maximum possible reduction for a planar shield with

essentially no reflection of sound from its surface and with little or no

sound generation due to boundary layer disturbances on its surface. In

support of this statement recall, first, that the rms pitot probe located

in the free stream of the tunnel is influenced by noise from the turbulent

boundary layers on each wall. However, for a planar shield model that
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spans the tunnel, a probe located in the flow field of the model is

shielded from noise radiated by the boundary layer on the bottom wall

but receives direct radiation from the top wall and one-half of the

side walls. The measured noise intensity is thus dependent upon the

height of the probe above the rods and view angles with respect to the

radiated noise. If the noise generated by each tunnel wall is assumed

to be additive in accordance with Laufer's [30] assumption that the mean

pressure level in an open tunnel consists of equal contributions from

each of the four wind tunnel walls, the noise level attenuation in the

flow field of a perfect flat plate shield should be about 50 percent of

the free stream value in good agreement with the present results. This

agreement further suggests that the boundary layers on the rods did not

generate significant noise for G/D = 0.16 up to Re/ft = 8 x 106 and the

rods effectively prevent reflection of incident noise from the free

stream into the model flow field. This apparent prevention of reflected

noise into the shielded region is very important for an effective wind

tunnel noise shield. However, as the rod gap spacing and suction were

reduced the sound attenuation efficiency of the shield was reduced

before transition occurred but the attenuation still remains significant.

It is therefore concluded that the present rod model, with a laminar

boundary layer on the rods and sonic cross flow in the gaps, provided

nearly complete shielding (about 90 percent or better of the maximum

possible) of the model flow field from noise radiated by the turbulent

boundary layer on the nozzle wall. Transmission of noise through the
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shield from underneath was prevented by the bottom plate (Fig. 21.) and

by sonic flow through the gaps. The application of the present sound

shield concept to the design of a quiet tunnel [12, 17] should therefore

result in a substantial reduction in the noise level in a test section

shielded on all sides [12] when laminar flow is maintained along the

entire length of the shield by suction.

7.6 Mean Pitot Pressure Measurements in Model Flow Field

A pitot pressure rake with six equally spaced pitot tubes was used

to survey the flow field in a horizontal and verticle plane above the

circular rods at a = 100 for G/D = 0.12. The probes were spaced at

0.25-inch intervals across a wedge support. The tubes had an inside

diameter of 0.040-inches and outside diameter of 0.060-inches. The mean

pitot surveys were conducted in an attempt to evaluate the "flow quality"

or uniformity of the mean flow field.

Figure 7.6 (a) shows the ratio of the mean pitot pressure in the

model flow field to the calculated stagnation pressure behind the oblique

shock as a function of model spanwise location for a range of local unit

Reynolds number. The ratios of Pt,2/(Pt,l)cal were obtained from the

variation of Pt,2/Po with Re/ft shown in Figure 7.6(b) and the calculated

value of Pt,l behind the oblique shock on the flat plate rod model. The

location of the rod gaps for G/D = 0.12 (Fig. 7.6(a)) are indicated on

the horizontal axis to show the probe locations with respect to the gaps

and rods. The rake was located 1.125-inches above the rods at x = 15.2-

inches. The data indicate deviations in pitot pressure and Mach number in
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the model spanwise direction for all values of Re/ft. The maximum change

in Mach number in the spanwise direction is about AM = 0.02 for a given

value of Re/ft. The average spanwise pressure level decreases with

increasing local unit Reynolds number with a maximum change in Mach

number of about AM = 0.11. The quality of the model flow field is

believed to be satisfactory at this station above the rods (y = 1.125-

inches) even though the pressure distribution is changing in the span-

wise direction with increasing Re/ft. Figure 7.6 (b) gives the variation

with unit Reynolds number of the model flow field results at a single

station of 1.125-inches above the rods and 0.0625-inches off the model

centerline. The tunnel free stream calibration [31] at one inch above

the tunnel centerline and same longitudinal location but without the model

in place is also given in Figure 7.6 (b). The variation with unit Reynolds

number of the local Mach number (Mm), obtained from Pt,2/(Pt,l)cal in the

model flow field, is about AM, = 0.09 and nearly the same as the correspond-

ing variation of the free stream Mach number (AM- = 0.06) in the wind

tunnel [31].

Figure 7.6.1 shows pitot pressure profiles in the model flow field

normal to the top of the 0.25-inch diameter rod located on the model

centerline as a function of distance above the rod. With the exception

of the data very near the top of the rod (y = 0.0625), the results

indicate that the quality of the flow is good for all Reynolds numbers

tested. These results are in agreement with those presented in Figure

7.6 (a) for the spanwise surveys. An increase in level of the data near
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the top of the rod (y = 0.0625) with Re/ft before decreasing again with

a further increase in Reynolds number (see insert in Fig. 7.6.1) is

believed to be due to the presence of that probe in or near the rod

boundary layer. This variation in pressure near the rod with Re/ft is

a possible indication of transition of the rod boundary layer and 
would

require further investigation for verification. One other possibility

is that this probe located near the top of the rod was in the immediate

region of discrete vortices [17] above the rods. The observed variation

in pressure may then be a result of changes in vortex strength or movement

with increasing Re/ft. This preliminary evaluation of the model flow

field for a single gap spacing is not conclusive, however, these limited

results indicate that the flow quality in the shielded region is satis-

factory for normal distances greater than about one rod diameter above

the rod array and over the center portion of the model span.

VIII. APPLICATION OF SOUND SHIELD CONCEPT

8.1 Langley Quiet Tunnel Sound Shield

The sound shield concept considered in this thesis is planar and is

intended to test the concepts to be used for an actual sound shield that

would enclose the entire test section of a wind tunnel. A cylindrical

sound shield constructed of longitudinal rods is currently being tested

in the Langley Pilot Quiet Tunnel [32]. The configuration is illustrated

in Figure 8.1 and presents some difficult design, construction, and flow

field analysis problems. Experience gained from the present flat plate
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sound shield was used in the development of the axisymmetric sound shield

[32]. The entire assembly is mounted within a vacuum chamber. There is

an annular scoop transverse to the flow in the subsonic portion of the

nozzle to remove the turbulent boundary layer that develops upstream of

the slot [33]. Using this design technique [32], a laminar boundary layer

is started just upstream of the nozzle.throat and transition should be

delayed on the nozzle wall provided the slot does not introduce additional

disturbances that would also enter the shield flow field.

The axisymmetric sound shield (Fig. 8.1) is mounted at the exit of

the slotted nozzle. The rods are aligned with the exit free stream flow

and arranged cylindrically to provide complete shielding of the enclosed

test region from sound radiation by the boundary layer and free shear

layer. The gaps between the rods are adjustable and flow through the

rods is exhausted into a vacuum manifold to maintain the pressure on the

leeside of the rods equal to or less than (0.528) of free stream static

pressure inside the shield. Cross flow normal to the rods is thereby

accelerated to sonic velocity at the minimum gap width. The sharp

leading edge of the sound shield is just inside the nozzle internal

diameter and serves as a scoop to remove the turbulent boundary layer

on the nozzle wall. The laminar boundary layer forming on the inside

wall of the shield is partially removed through the gaps.

Preliminary tests on the small axisymmetric sound shield (Fig. 8.1)

with G/D = 0.068 have been conducted at Mach 5 [32]. The results showed

that at the lowest test Reynolds number based on rod diameter of 5.2 x 104



54

the shield reduced the test section noise by about 60 percent (or 8 dB

attenuation) buot very little attenuation was measured for higher Reynolds

numbers up to 1.9 x 105. The results were below expectations based on

results herein and were attributed to insufficient suction at the gaps to

prevent feedback of vacuum manifold noise into the shielded region and

the prevention of transition of the rod boundary layers to turbulent flow

at the higher test Reynolds numbers. Increased gap spacing and vacuum

mass flow capability will be required to obtain the large sound attenua-

tion and transition Reynolds numbers that would be expected based on the

present planar sound shield results.

CONCLUDING REMARKS

To obtain low levels of stream disturbances at high test Reynolds

numbers in supersonic wind tunnels, noise radiation shields will be

required. Therefore, an experimental and theoretical investigation has

been conducted on a conceptual noise shield model. The model consisted

of circular rods aligned with the flow with adjustable gaps between the

rods for boundary layer suction. Results are reported at Mach number 6

for a wide range of local Reynolds numbers and for gap-to-rod diameter

ratios of 0.068, 0.12, and 0.16.

The effective sweep angle of the rods with respect to the local flow

was very large (B = 890), nevertheless, the boundary layer behavior on

the rods was surprisingly well represented by swept cylinder theory.

With boundary layer removal by induced suction through the rod gaps,
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laminar flow can be maintained on the rod shield model up to a local

Reynolds number per foot of 7.5 x 106 for a gap-to-rod diameter ratio of

G/D = 0.16. The maximum local Reynolds number where transition occurred

on the planar shield model for this gap spacing was about 15 x 106, which

is about 7.5 times higher than that for a conventional flat plate at the

same local unit Reynolds number and in the same wind tunnel. Less favor-

able results were obtained with decreasing gap-to-diameter ratio. Transi-

tion Reynolds number was found to decrease by about a factor of two with

reduced gap spacings of G/D = 0.12 and 0.068 and the corresponding reduced

suction mass flow. However, the model still provided a significant

increase in transition Reynolds numbers above that for a flat plate with-

out suction. Transition moved rapidly forward on the suction model with

further increases in local Reynolds number, with a trend unlike that for

a flat plate for the two largest gap spacings. The forward movement of

transition on the model for G/D = 0.068 is similar in trend to that for

a flat plate. Hence for G/D = 0.068, the boundary layer behavior is

similar to that for a flat plate.

A comparison of the present transition results for the circular rods

with correlations on swept cylinders indicated that for G/D = 0.16, transi-

tion may be dominated by leading edge or "root" disturbances. Since the

general properties and transition behavior of the boundary layers on the

rods are similar to those on swept cylinders, transition would be

essentially independent of rod length and primarily a function of Reynolds

number based on rod diameter for a given gap spacing and leading edge

configuration.
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Sound levels measured in the semi-shielded region of the model

showed that nearly 90 percent (20 dB attenuation) of the maximum theo-

retical possible noise attenuation was achieved with sonic cross flow

suction at the gaps and laminar boundary layer on the rods for G/D = 0.16.

However, reduced gap spacing and suction caused both a reduction in

transition Reynolds number and in the sound attenuation that could be

achieved. These results are in agreement with the transition results

obtained from measured heat transfer data.

Evidence of wave patterns present in the model flow field and

possible discrete vortices very near the rod array surfaces was found.

The somewhat irregular spaced wave patterns observed for the two largest

gap spacings and 100 angle of attack were attributed to measured errors

in gap spacing. The more regular spaced wave patterns observed for

G/D = 0.068 were possibly due to the interaction of adjacent vortices

at the sonic gap flow region between the rods. A preliminary evaluation

of the model flow field for a single gap spacing based on limited results

indicate that the flow quality in the model shielded region is satis-

factory for normal distances greater than about one rod diameter above

the rod array and over the center portion of the model.

It is concluded that a cylindrical shroud utilizing the slotted wall

concept and boundary layer suction can provide significant reduction of

disturbance levels in supersonic wind tunnels at high Reynolds number.

However, gap spacings on the order of G/D = 0.16 may be required to

achieve desired results.
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